Deep Reinforcement Learning based dynamic optimization of bus timetable
نویسندگان
چکیده
Bus timetable optimization is a key issue to reduce operational cost of bus company and improve the transit service quality. Existing methods optimize offline. However, in practice, short-term passenger flow may change dramatically from time time. Timetables generated offline cannot be adjusted real handle changed flow. In this paper, we propose Deep Reinforcement Learning based Timetable dynamic Optimization method (DRL-TO). DRL-TO, problem formulated as Markov Decision Process (MDP). A Q-Network (DQN) applied agent decide whether departs at each minute during period. Therefore, departure intervals services are determined accordance with demand. We identify several new useful state features for DQN agent, including load factor, carrying capacity utilization rate, passengers’ waiting number stranded passengers. Considering interests both passengers, reward function designed, which includes metrics full empty time, Experiments demonstrate that, comparison by approaches manual method, DRL-TO can dynamically determine on real-time flow, generate less points (i.e., cost) shorter higher quality service).
منابع مشابه
Operation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm
: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...
متن کاملDeep Reinforcement Learning for Dynamic Multichannel Access
We consider the problem of dynamic multichannel access in a Wireless Sensor Network (WSN) containing N correlated channels, where the states of these channels follow a joint Markov model. A user at each time slot selects a channel to transmit a packet and receives a reward based on the success or failure of the transmission, which is dictated by the state of the selected channel. The objective ...
متن کاملVision-based Deep Reinforcement Learning
Recently, Google Deepmind showcased how Deep learning can be used in conjunction with existing Reinforcement Learning (RL) techniques to play Atari games[11], beat a world-class player [14] in the game of Go and solve complicated riddles [3]. Deep learning has been shown to be successful in extracting useful, nonlinear features from high-dimensional media such as images, text, video and audio [...
متن کاملLearning State Representations for Query Optimization with Deep Reinforcement Learning
Deep reinforcement learning is quickly changing the field of artificial intelligence. These models are able to capture a high level understanding of their environment, enabling them to learn difficult dynamic tasks in a variety of domains. In the database field, query optimization remains a difficult problem. Our goal in this work is to explore the capabilities of deep reinforcement learning in...
متن کاملReinforcement Learning with Deep Energy-Based Policies
We propose a method for learning expressive energy-based policies for continuous states and actions, which has been feasible only in tabular domains before. We apply our method to learning maximum entropy policies, resulting into a new algorithm, called soft Q-learning, that expresses the optimal policy via a Boltzmann distribution. We use the recently proposed amortized Stein variational gradi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Soft Computing
سال: 2022
ISSN: ['1568-4946', '1872-9681']
DOI: https://doi.org/10.1016/j.asoc.2022.109752